20 November 2008

Constructions of Microporcessor

Microprocessors are fabricated using techniques similar to those used for other integrated circuits, such as memory chips. Microprocessors generally have a more complex structure than do other chips, and their manufacture requires extremely precise techniques.

Economical manufacturing of microprocessors requires mass production. Several hundred dies, or circuit patterns, are created on the surface of a silicon wafer simultaneously. Microprocessors are constructed by a process of deposition and removal of conducting, insulating, and semiconducting materials one thin layer at a time until, after hundreds of separate steps, a complex sandwich is constructed that contains all the interconnected circuitry of the microprocessor. Only the outer surface of the silicon wafer—a layer about 10 microns (about 0.01 mm/0.0004 in) thick, or about one-tenth the thickness of a human hair—is used for the electronic circuit. The processing steps include substrate creation, oxidation, lithography, etching, ion implantation, and film deposition.

The first step in producing a microprocessor is the creation of an ultrapure silicon substrate, a silicon slice in the shape of a round wafer that is polished to a mirror-like smoothness. At present, the largest wafers used in industry are 300 mm (12 in) in diameter.

In the oxidation step, an electrically nonconducting layer, called a dielectric, is placed between each conductive layer on the wafer. The most important type of dielectric is silicon dioxide, which is “grown” by exposing the silicon wafer to oxygen in a furnace at about 1000°C (about 1800°F). The oxygen combines with the silicon to form a thin layer of oxide about 75 angstroms deep (an angstrom is one ten-billionth of a meter).

Nearly every layer that is deposited on the wafer must be patterned accurately into the shape of the transistors and other electronic elements. Usually this is done in a process known as photolithography, which is analogous to transforming the wafer into a piece of photographic film and projecting a picture of the circuit on it. A coating on the surface of the wafer, called the photoresist or resist, changes when exposed to light, making it easy to dissolve in a developing solution. These patterns are as small as 0.13 microns in size. Because the shortest wavelength of visible light is about 0.5 microns, short-wavelength ultraviolet light must be used to resolve the tiny details of the patterns. After photolithography, the wafer is etched—that is, the resist is removed from the wafer either by chemicals, in a process known as wet etching, or by exposure to a corrosive gas, called a plasma, in a special vacuum chamber.

In the next step of the process, ion implantation, also called doping, impurities such as boron and phosphorus are introduced into the silicon to alter its conductivity. This is accomplished by ionizing the boron or phosphorus atoms (stripping off one or two electrons) and propelling them at the wafer with an ion implanter at very high energies. The ions become embedded in the surface of the wafer.

The thin layers used to build up a microprocessor are referred to as films. In the final step of the process, the films are deposited using sputterers in which thin films are grown in a plasma; by means of evaporation, whereby the material is melted and then evaporated coating the wafer; or by means of chemical-vapor deposition, whereby the material condenses from a gas at low or atmospheric pressure. In each case, the film must be of high purity and its thickness must be controlled within a small fraction of a micron.

Microprocessor features are so small and precise that a single speck of dust can destroy an entire die. The rooms used for microprocessor creation are called clean rooms because the air in them is extremely well filtered and virtually free of dust. The purest of today's clean rooms are referred to as class 1, indicating that there is no more than one speck of dust per cubic foot of air. (For comparison, a typical home is class one million or so.)

Tidak ada komentar: